Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4.

نویسندگان

  • Omar S Qureshi
  • Yong Zheng
  • Kyoko Nakamura
  • Kesley Attridge
  • Claire Manzotti
  • Emily M Schmidt
  • Jennifer Baker
  • Louisa E Jeffery
  • Satdip Kaur
  • Zoe Briggs
  • Tie Z Hou
  • Clare E Futter
  • Graham Anderson
  • Lucy S K Walker
  • David M Sansom
چکیده

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4-expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28-CTLA-4 system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in mice.

Although previous studies have shown that altered B7 costimulation plays a critical role in UV irradiation-induced regulation of immunity, the individual roles of the B7 receptors (CD28 and CTLA-4) or the B7 family members (CD80 and CD86) have not been explored. Thus, we investigated CTLA-4 signaling during photocarcinogenesis of chronically UV-B-exposed mice using an antagonistic anti-CTLA-4 A...

متن کامل

The CD28/CTLA-4-B7 signaling pathway is involved in both allergic sensitization and tolerance induction to orally administered peanut proteins.

Dendritic cells are believed to play an essential role in regulating the balance between immunogenic and tolerogenic responses to mucosal Ags by controlling T cell differentiation and activation via costimulatory and coinhibitory signals. The CD28/CTLA-4-CD80/CD86 signaling pathway appears to be one of the most important regulators of T cell responses but its exact role in responses to orally a...

متن کامل

Affinity and cross-reactivity engineering of CTLA4-Ig to modulate T cell costimulation.

CTLA4-Ig is an Fc fusion protein containing the extracellular domain of CTLA-4, a receptor known to deliver a negative signal to T cells. CTLA4-Ig modulates T cell costimulatory signals by blocking the CD80 and CD86 ligands from binding to CD28, which delivers a positive T cell costimulatory signal. To engineer CTLA4-Ig variants with altered binding affinity to CD80 and CD86, we employed a high...

متن کامل

NK cell triggering by the human costimulatory molecules CD80 and CD86.

NK cell-mediated effector functions are regulated by a delicate balance between positive and negative signals. Receptors transmitting negative signals upon engagement with target cell MHC class I molecules have been characterized in detail in recent years. In contrast, less information is available about receptor-ligand interactions involved in the transmission of positive or "triggering" signa...

متن کامل

CD80 and CD86 C domains play an important role in receptor binding and co-stimulatory properties.

CD80 and CD86 expressed on the surface of antigen-presenting cells interact with cytotoxic T lymphocyte antigen-4 [CTLA-4 (CD152)] expressed on activated T cells and mediate critical T cell inhibitory signals. CD80 and CD86 are type I glycoproteins, and are made up of two extracellular (EC) Ig-like domains-a transmembrane region and a cytoplasmic tail. The N-terminal (V domain) and membrane-pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 332 6029  شماره 

صفحات  -

تاریخ انتشار 2011